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ABSTRACT: The stability theory -f laminar boundary layers in
response to infinitesimal disturbances is re-examined for the case
of a binary mixture with foreign gas injection. Because of the
inherent limitations of the asymptotic stability calculation pro-
cedures, an approach was taken which utilizes the complete equation
system. Such an approach is described herein and the resulting
system of equations is presented in a manner suitable for numerical
evaluation.
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Formulation of the Complete Equations of Boundary Layer Stability
with Mass Transfer

The present analysis extends the methods of direct solution of the
boundary layer disturbance equations to account for the effects of
foreign gas injection on the laminar boundary layer stability. The
method is based on the work of W. B. Brown and L. M. Mack, with the
differences coming from the addition of a species continuity equation,
diffusive flux terms in the energy equation, a modification of the
form of the equation of state, and a difference in the dependency of
the transport properties on the state variables.

The present report covers only the formulation of the equation system
to a point where solutions may be sought by numerical methods.
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SYMBOLS

AQj )  factor in the general solution of equation (98) defined ini equation (129), and given by equations (130) through (137)

aii complex coefficients defined by equation (60)

B( )  factor defined in equation (114) and given by equations (123)
i through (128)

complex coefficients which are combinations of the aij; given
bi 3i by equations (103) through (113)

C pspecific heat

CP specific heat ratio defined in equation (23)

c mass concentration

cj coefficients defined by equation (129)

ci imaginary component of disturbance velocity

cr real component of disturbance velocity

aab binary diffusion coefficient

d molecular diameter

eii : strain tensor

F(cb) function defined by equation (12)

f(T,) mo-de function for ul

G quantity defined in equation (34)

h enthalpy

quantity defined by equation (83)

L length scale used in non-dimensionalizing the equationx
system, - -

x

m molecular weight

mn () mode functions for the variables given in page 8,
n - 1, 2, 3, 4, 5, and 6

Pr Prandtl number
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SYMBOLS (Cont'd)

p pressure

Q general designation for a quantity

R gas constant

r(n) mode function for pl

ro- Reynoldi number

Sc Schmidt number

T temperature

u velocity parallel to plate

ui(or u.) general designation for velocity in the i
th (or j th)

direction

set of dependent variables defined in page 19,
n - 1, 2, 3, and 4

v velocity .normal to plate

w(TI) dimensionless velocity ratio, defined in page 8

x i  Cartesian coordinate in the ith direction

y coordinate normal to the plate

Zn set of dependent variables defined in equation (59),
n - 1, 2, 3, 4, 5, 6, 7, and 8

a wave number of the disturbance

aij quantity defined in equation (34)

y ratio of specific heats

6 ij Kroenicker delta

IBlasius' similarity variable, Z xx x
quantities defined in equations (55) through (58),

n - i, 2, 3, and 4

8(u) mode function for h'

Iviscosity coefficients

v
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SYMBOLS (Cont'd)

exponents in the particular solutions (Eq. (114)) given
by equations (119) through (122)

Jcoefficient of bulk viscosity

V coefficient of kinematic viscosity

9(n) mode function for C b

mode function for p

p density

time scale used in non-dimensionalizing equation system,

U

stress tensor

S( n) mode function for v'

Subscripts

a refers to mean flow gas

b refers to injected gas

0refers to boundary layer thickness
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INTRODUCT ION

The effect of foreign gas injection on the stability of the
laminar boundary layer was first analyzed by Shen, reference (1),
in 1957 using asymptotic procedures. He developed the "inviscid
solutions" in power series of the square of the wave numbers, ci2

and then demonstrated how the "viscous solutions" could be obtained
by an asymptotic expansion in the inverse square root of the product
of the wave number and the Reynolds number, (a Re6)-i. By further
manipulation he was able to show that the influence of foreign gas
injection was evident primarily through the mean boundary layer
profiles and through a simple correction factor in the well-known
Dunn and Lin secular equation, reference (2). In addition, Shen
developed an "inviscid criterion" for the stability of injection
profiles and by applying this criterion he was able to demonstrate
that the injection of a heavy molecular weight gas as a coolant
might lead to bouneary layer with improved stability characteristics.

The possibility of improving the stability characteristics
of boundary layers by injection of heavy molecular weight gases
stimulated the research of Powers, Heiche, and Shen, re,erence (3),
who made a qualitative investigation of this phenomenon. They
reformulated the asymptotic procedures of reference (1) to facili-
tate numerical solution of the stability equations and made a
systematic investigation of the effects of varying the molecular
weight and diameter of the injected gas. It was shown that, in
terms of minimum critical Reynolds number, the injection of a small-
diameter light-weight gas could decrease the stability by as much
as an order of magnitudc. In contrast, the injection of a large-
diameter heavy gas could actually improve the stability of the
boundary layer. Those results were for zero Mach number thermal
boundary layers; however, the findings were found to apply up to
low supersonic Mach numbers in a later investigation, reference (4).

Attempts to extend the results to Mach numbers higher than about
1.3 by the asymptotic approach were not possible because of an
inherent limitation in the procedure. This limitation is believed
to be associated with the apparent singularity in the "inviscid"
equation. The singularity occurs when the velocity of the distur-
bance relative to the wall becomes supersonic and as a result one
of the coefficients of the differential equations changes sign. This,
in turn, violates one of the conditions of the Sturm-Liouville,
theorem which guarantees the existence of elgensolutions only under
certain conditions. It has been possible to obtain solutions at
high Mach numbers by changing dependent variables in a manner suggested
by Lees and Lin, reference (5). Such solutions were obtained by
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Reshotko, reference (6), but they were not unique eigensolutions.
L. Mack, reference (7), demonstrated in fact that the aultiplicity
of solutions increased as the Mach number increased.

The use of asymptotic procedures at high Mach numbers would
require the inclusion of many terms which had previously been
neglected and as a result the numerical program would become very
complex. Under these circumstances it was considered desirable
to investigate the high Mach number effects of mass transfer on the
boundary layer stability by developing a method of directly solving
the complete linearized disturbance equations by numerical methods.
The feasibility of the direct solution method has already been
established by the excellent pioneering work of Drs. W. Byron Brown,
reference (8), and L. Mack, reference (9). Both of these investi-
gations have been well documented and may be considered as the
foundational work upon which the present development is based. It
is thereforg the objective of the present study to extend these
previous methods to accommodate the effects of foreign gas injectiou
on the laminar boundary layer stability. The present investigation
is a formulation of the equation system, and methods of obtaining
numerical solutions are indicated. Numerical solutions are not
included in the present report since it was considered desirable to
expedite the dissemination of the formulation before complete solu-
tions were obtained.

ANALYSIS

Ceneral Equations

The general equations of motion for a binary gas system in
Cartesian tensor notation are used as the basic equations for the
present analysis. These equations are the equations of motion,
global continuity, species continuity, and energy. In the dimen-
sional form they are the following:

9cr
Motion: U; -Pa(

V 1P 49v

Global Continuity: R' a (A )-0(2)

Species Continuity: 9,<,-)(3)

2
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Energy: t +lito (4)

In these equations all quantities take their conventional definitions
as defined in the list of symbols. The terms which result from the
inclusico:ts of mass injection are related to the quantities: Cb, the
mass concentration of the injection gas; Lab, the binary diffusion
coefficient for the diffusion of gas "b" into gas "a"; Sc, (iph),
the Schmidt number; and, h. or hb, the enthalpies of the components
species. The stress and rate-of-strain tensors tyk the sacfrs

and 4- A ] (6)

where the viscosity coefficient, X, is equal to three halves of the
bulk viscosity coefficient.

In addition to equations (1) through (4) we must add to the
basic set a form of the equation of state which is compatible with
our application to the binary system. This is accomplished by using
the conventional relation:

fW (7)

where for the binary mixture the assumption is =ade that the gas
constant and the mean specific heat are functions only of the species
concentrations. This leads to the relations:

- ( -4 ) (8)
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and 7--- /c? (10)

By using equations (8), (9), and (10) in equation (7) and forming
the logarithmic derivative the equation of state takes the form:

-e - * , (11),-461

where ie _2L (12)

In equation (11) the prime Is used to indicate the fluctuation or
disturbance part of a quantity which, when added to the time inde-
pendent basic flow (indicated as b9rred), yields the instantaneous
value of the quantity. This is written as:

(Note: Later the primes will be used to indicate derivatives with
respect to the independent variable. This notational change is for
convenience and wiil be noted when it occurs.)

Introducing the instantaneous form of the variables equation (13),
into equations (1) through (4), subtracting the mean flow equations,
and neglecting quadrat.c terms in the disturbance quantities results
iL the general form of the disturbance equations Ls follows:

motion: LL U(4)

4
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Global Continuity: + + (15)

r c __ . ' .- .( L4.

Species Continuity: 4- F oL
tt

= jE ) ~ ~ 5(16)
Energy: +:9i~ ~ .A~L+ t-~--

+L ; jjT' Q'. -tC
12 eVL/(17)

I. n+0

+ Lb C Dr-

CCp

Two Dimensional Parallel Flow

The only simplifying assumptions are now made; namely, that the
mean flow is parallel and that the disturbances and the mean flow are
two dimensional. The first of these assumptions implies that v << U
and that derivatives of mean flow quantities with respect to x may

be neglected, ( i.e., 7 << -F). The second assumption eliminates

the coordinate dependence from the problem. These assumptions are

5
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conventional in boundary layer stability and no attempt is made here
to evaluate their significance since this has been the subject of
previous investigations. (See, for example, reference (2).) As a
result of these assumptions, equations (14) through (17) can be
written as follows:

C D'

x-omntm 9L -9z

= --Zdjs #. +y

(18)

y -momentum_-

Global Continuity:

6(20)

6
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Species Continuiy. 67,/'

Energy: 
g~

/99

~/ /

4 /(

77j/
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where: -- (23)

)2)

The Mode Function Equations

It is next desirable to express the equations (11) and (18)
throug,. (22) in dimensionless form. This is accomplished by intro-
ducing the length scale, A - x/i- x , the time scale, T - 1/Uw , and
by scaling the other variables with respect to their values at the
edge of the boundary layer. The concentration of the injectant is
an exception to this scaling since it is already dimensionless. We
note that scaling results in the use of the Blasius variable,

Z /Re- , to represent the y coordinate. It is further desirable

to represent all of the fluctuations as harmonic functions whose
amplitude is determined by a "modd' function of T. Using these con-
siderations, the mean flow and fluctuation quantities are expressed
as in the following table:

TABLE I

Mean Flow Variable Fluctuation Quantity

>i.7 L.o C<, s.> '- u0 : ::)/ c.-e)

14# t. x- ct)

J //6x- ct)

8
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TABLE I Cont'd.

"-,4-" / LK

Ot

Using the definitions given in Table I, introducing the Reynolds
number, R - -- - 4ex , and using the global continuity equation

in the energy equation gives the desired form of the mode function
equation. (Note: For the following pages the primes will be used
to indicate derivatives with respect to the variable .)

x-momentum: ,- f-,-' f- -<' *f+

(24)
oAAt

171
y-momentum: /fk1)J : y

(25)

7'- .. < ( I,',D '

9 2
Pf j t 4



Global Continuity:

/Q.,-c "i- f'- 7j 9 (cf+f) -0 (26)

Species Continuity:

f -(- = . -I 0<(27)

Energy: i1-c I-#, - -.

(4- L9 *5 d * (to- -
. <(28)

+ -A - z-7 ) 4 : @ -) .C { 7

Equation of State:

7)= + (29)

Before equations (24) through (29) can be developed further it is
necessary to establish the form to be used for the thermodynamic and
transport properties of the mixture.

Thermodynamic and Transport Properties

One of the major differences of the present development and the
previous developments of Brown and Mack, references (8) and (9), is
the manner in which the thermodynamic and transport properties enter
the equation system. In the previous works, these properties are
considered to be thc3e of a single species and hence are only functions
of temperature fe given pressure. In the present investigation,
since we arc dealing with the injection of a foreign gas into a
boundary layer, these properties are necessarily functions of both
temperature and concentration. Since enthalpy is used herein in place

10
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of temperature, the fluctuations of these properties and their n
derivatives will be related respectively to the enthalpy and concen-
tration fluctuations and to the enthalpy and concentration profiles.
In the mode function equations, the properties appear both as ndQ
derivatives, d, and as their fluctuation mode functions, mi().

Because of the dual dependence these expressions are written as:

d 74 d (30)

and: 22 ,~ ) ~ (31)

where subscripts h and Cb indicate derivatives with respect to those
quantities.

Further development of these expressions is dependent on the
choice of thermodynamic and transport property relations. To
achieve a reduction in complexity, the forms used by Korobkin,
reference (10), are used. These mixture properties only appear as
dimensionless ratios, with the exception of the P_'andtl number and
the ratio of specific heats at the edge of the boundary layer. These
two then become the pure air values. The dimensionless ratios of
the mixture properties are developed in terms of the temperature
ratio, T, concentration, Cb, molecular weight, ma or mb, and molecular
diameter, da or db, to be the following:

/i cz- /_s))(32)

/ / yf ({(s)1*4where-j3'- c) (34)' _C

CIO TZ/
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~=. r~-(35)

In addition we write for convenience:

-- (36)

Using these expressions in "he proper combinations, the required
relations in equations (30) and (31) become:

(37)

*/ y (38)

" -"(39)

4, - (40)

CIc (41)

le .(42)

'3
CC (43)

(44)

12
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Or (45)

~(46

= s 4 K )-? -2 (47)

1 (48)

oe

A4 (50)

(51)

21- (54)

where:

J12 I4I (55)

13
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3 (56)

~ __ __ __ __ - 2' .'

JQ 70  ]_ [3 Q-J J(57)

Reduction to Normal Form

The equation system, equations (24) through (29), is reduced to

normal form by the introduction of a new set of variables defined as

follows :

In this form we have a system of eight first order differential

equations.
(

C,"~~' -- " '..j(0

The coefficients, aj, are made up of combinations of the mean

velocity, enthalpy> aensity, and concentration profiles, the thermo-

dynamic and transport properties, and the four basic pariuters of

the problem; namely, the wave number, , the Reynolds number, , the
real component o the wave velocity, Cr, and the imainary component

of the wave velocity, ci. Of the 64 possible complex coefficients,

ai, only 36 are nonzero and they are the folowing:

14
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/ (61)

(62)

2 (63)

23z c oz(4

74

6 ,?3 - - (67)

oz

6? = - __ (70)

: = - .) (71.)

(72)

15



NOLTR 66-187

I

-~ ( 4 ~.'-c)(73)

a3, (74)

S- -/--(76)

/' /, ~r .lf

(77

C 7e-,- l (78)

(8)

146

16
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where:

,'~ 
(83)

(84)

( ,(86)/I

(u~'-C)(87)

(88)

17
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(Eq. (90) coatinued)

/5s)~ P A/(5

13 cJ' z ;o12

JA.

(92)

/ ,, 1¢

~ / ("4 (94)

o~~X~j(95)

d¢ : c . ,f~w-),, .,r, .-) Cb> ')

8(96)

18
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g8 c~iC / " ) " X ( (97)

Method of Solution

While the present report does not go beyond a formulation of the
equation system it is possible to draw upon the work of Brown and
Mack, references (8) and (9), and to develop a suggested method of
solving the equation system, (60). In both of these references the
authors constructed linearly independent solutions which were inte-
grated across the boundary layer and were then combined to yield
a general solution satisfying the boundary conditions. The two
methods differed in the direction of integration and in the search
procedure used to vary the initial guesses until a proper set of
eigenvalues was obtained. The present suggested procedure follows
more closely the method of Mack, reference (9).

Initially, we look for four linearly independent solutions
which are applicable at il q6. These solutions are found by
solving the equation system:

OD

(98)
d=J

where the superscript asterisk on the aij coefficients means that
they take on their constant value at i n 6. To facilitate the
derivation of these solutions the dependent variables are changed
by the substitutions: V1 " Z; U2 - Z4 ; V3 - Z5 ; and V4 - Z7. This

changes the eight first order equations into four second order equa-
tions which are:

II

V 3 3  -." 10

V3 •+b s~ (101)

19

b,~~~~ ~ ~ ~ -2 3Vj 1 4(9
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b a, a,4 (103)

b - (104)

b : (105)

bit 6z .(106)

+-. 6 7~ 3 ?a.7 (109)

a (110)

(112)

a,. (113)

The system of equations (99) through (102) has particular

solutions which may be written:

V = (114)

Putting the ,,jth, particular solution into the equations yield
the following equations:

. 2 '9 3~ + (115)(,i)

20(116)

20
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- Cb3  " * b3 -- 8 (117)

&3

The characteristic determinant yields four negative roots and
four positive roots. The positive roots are discarded since they
would give solutions increasing exponentially in i). The negative
roots are:

A 1  / -. (119)

- + b 3 3 ) [ b Zi (120)

- (121)

Now by selection of a specific magnitude for one of the B3) 's
in each of the four j groups of fundamental solutions the equa-
tions (115) to (118) can be solved to yield the following values:

Ford -1:
(i)

(I)

(,) (123)

21
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For j - 2 or 3:

A'- bb 1

J52 -  3 (124)

B3 J  - -b

For j - 4:

b-,4) b2 bb,, [14(

b33,)+~ "2.3 b-' + 1  \ b3,4 Cb. - b )4 biq b~z] (1 1* (125-)

F b - bp) C b, -k3) -b b 32- 1 2'

- 25 b 3 j (126)
-1

(128)

Next, it is possible to write a general solution of equation (98) as:

22(129

22
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where we have used the fact that the four exponentially growing

fundamental solutions are discarded. The A I s of equation (129)

are now related to the B (  's as follows:

= )(130)

-l '" (131)

,3 - g- j,(132)

(.)(133)

A,; 83 ) (134)

A U (135)

(136)

'-- ' (137)

The four j values now yield four fundamental solutions which
may be numerically integrated from 11 'q6 to the wall, 1. - 0. At
the wall the fundamental solutions are combined to give the general
solutions which satisfy the remaining boundary conditions for high
frequency fluctuations; namely.

73- (13 8)

23



NOLTR 66-187

CONCLUDING REMARKS

The present analysis extends the methods of direct solution of
the boundary layer disturbances equations to account for the effects
of foreign gas injection on the laminar boundary layer stability.
The similarities between the present method and the methods of
Brown and Mack, references (8) and (9), are obvious and do not
require further comment. The major differences in the present
metaod which result from the inclusion of mass transfer come from
the addition of the species continuity equation, the diffusive flux
terms in the energy equation, a modification of the form of the
equation of state, and a difference in the dependence of the trans-
port properties on the state variables. The present report covers
only the formulation of the equation system, however, the analysis
has been carried to a point where solutions may be sought by numerical
methods.

24
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